Synthesis of Dimanganese Complexes from the Reduction of Cationic Tricarbonylmanganese Styrene Derivatives

Seung Uk Son, Su Seong Lee, and Young Keun Chung*
Contribution from the Department of Chemistry and Center for Molecular Catalysis, College of Natural Sciences, Seoul National University, Seoul 151-742, Korea

Received January 15, 1997^{8}

Abstract

Styrene derivatives of the manganese tricabonyl cation have been synthesized through the reaction of $\mathrm{Mn}(\mathrm{CO})_{5} \mathrm{BF}_{4}$ with excess styrene derivatives in refluxing $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and their chemical reduction has been studied. Treatment of $\left[(\text { styrene }) \mathrm{Mn}(\mathrm{CO})_{3}\right]^{+}(\mathbf{1}(\mathbf{H}))$ with 1.0 equiv of $\mathrm{Cp}_{2} \mathrm{Co}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or THF led to isolation of bimetallic $\mathbf{2}(\mathbf{H})$. Treatment of $\left[(1,1 \text {-diphenylethylene }) \mathrm{Mn}(\mathrm{CO})_{3}\right]^{+}(\mathbf{1}(\mathbf{P h}))$ with 1.0 equiv of $\mathrm{Cp}_{2} \mathrm{Co}^{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ yielded three different bimetallic compounds, $\mathbf{2}(\mathbf{P h}), \mathbf{3}(\mathbf{P h})$, and $\mathbf{4}(\mathbf{P h})$. The molecular structures of $\mathbf{2}(\mathbf{H}), \mathbf{2}(\mathbf{P h}), \mathbf{3}(\mathbf{P h})$, and $\mathbf{4}$ $(\mathbf{P h})$, determined by X-ray crystallography, were quite different from those of known bimetallics. Compounds $\mathbf{2}(\mathbf{H})$ and $\mathbf{2}(\mathbf{P h})$ have the $\eta^{5}: \eta^{3}$ bonding pattern, where a $\mathrm{Mn}(\mathrm{CO})_{4}$ moiety is coordinated to the styrene in an η^{3}-fashion. Compound $\mathbf{3}(\mathbf{P h})$ has the $\eta^{5}: \eta^{5}$ boding pattern with two $\mathrm{Mn}(\mathrm{CO})_{3}$ moieties π-coordinated to a ligand derived from a coupling of 1,1-diphenylethylenes through the ipso carbon atom. Compound $\mathbf{4}(\mathbf{P h})$ has a metal-metal bond with no bridging carbonyls; one of the manganese atoms is coordinated by 1,1 -diphenylethylene and two carbonyls and the other by the $\mathrm{Mn}(\mathrm{CO})_{5}$. There are multiple reduction pathways available to (arene) $\mathrm{Mn}(\mathrm{CO})_{3}{ }^{+}$cations having a vinyl substituent on the arene ring.

Introduction

The reductive activation of organometallic complexes has found numerous applications. ${ }^{1}$ Recently, it has been shown that reduction of $\left[(\text { arene }) \mathrm{Mn}(\mathrm{CO})_{3}\right]^{+}$complexes can lead to arene ring-slippage, ${ }^{2} \mathrm{CO}$ substitution, ${ }^{3}$ and bimetallic species resulting from carbon-carbon and metal-metal bond formation. ${ }^{4,5}$ Thus, the electrochemical or chemical reduction of $\left[(\text { arene }) \mathrm{Mn}(\mathrm{CO})_{3}\right]^{+}$ can lead to radical coupling through the arene ring to give cyclohexadienyl (Ch) complexes, ${ }^{4}\left[(\mathrm{Ch}) \mathrm{Mn}(\mathrm{CO})_{3}\right]_{2}$. It can also lead to CO dissociation and subsequent dimerization to the $\mathrm{Mn}-$ Mn bonded species, $\left[(\operatorname{arene}) \mathrm{Mn}(\mathrm{CO})_{2}\right]_{2} .{ }^{6}$ Which product is obtained depends on the experimental conditions and the specific arene. Other possible products include the ring-slipped η^{4}-anion, $\left[\left(\eta^{4}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Mn}(\mathrm{CO})_{3}\right]^{-},{ }^{2}$ formed by two-electron reduction of $\left[(\text { benzene }) \mathrm{Mn}(\mathrm{CO})_{3}\right]^{+}$and the cyclodimerized analogue $[\{\mathrm{Mn}-$ $\left.\left.(\mathrm{CO})_{3}\right\}_{2}\left\{\mu-\left(\eta^{4}-\mathrm{C}_{6} \mathrm{H}_{6}-\eta^{4}-\mathrm{C}_{6} \mathrm{H}_{6}\right)\right\}\right]^{2-} .{ }^{7}$ Reduction of $[($ arene $) \mathrm{Mn}-$ $\left.(\mathrm{CO})_{3}\right]^{+}$in the presence of phosphorus-donor nucleophiles induces rapid electron-transfer-catalyzed CO substitution. ${ }^{3}$

Recently, we have been interested in the chemical reduction of arene manganese carbonyl cations containing a vinyl sub-

[^0]stituent on the arene ring. Because of the importance of the chemistry of styrene, styrene derivatives of chromium carbonyls and cyclopentadienyl iron derivatives have been synthesized and studied, ${ }^{8,9}$ but styrene derivatives of manganese tricarbonyl complex have not been described. We have now found, however, that $\left[(\text { styrene }) \mathrm{Mn}(\mathrm{CO})_{3}\right]^{+}, \mathbf{1}(\mathbf{H})$, can be synthesized by the silver method ${ }^{10}$ under mild reaction conditions. It was anticipated that reduction of $\mathbf{1}(\mathbf{H})$ would yield a bimetallic complex in analogy to that described above. Indeed, chemical reduction of $\mathbf{1}(\mathbf{H})$ was found to yield a dimanganese compound, but one that differs fundamentally from known bimetallics. A concurrent study of the electrochemical reduction of $\mathbf{1}(\mathbf{H})$ was attempted. It was not pursued because the immediate polymerization of styrene liberated from $\mathbf{1}(\mathbf{H})$ became a problem. In this paper, we report and discuss the novel products formed by the chemical reduction of cationic manganese tricarbonyl complexes of styrene derivatives.

Results and Discussion

Synthesis of $\mathbf{1}(\mathbf{R})(\mathbf{R}=\mathbf{H}, \mathbf{P h})$. Unlike many $[($ arene $) \mathrm{Mn}$ $\left.(\mathrm{CO})_{3}\right]^{+}$complexes, attempts to synthesize $\left[(\right.$styrene $\left.) \mathrm{Mn}(\mathrm{CO})_{3}\right]-$ $\left[\mathrm{BF}_{4}\right], \mathbf{1}(\mathbf{H})$, by the usual Fischer-Hafner method ${ }^{11}$ were unsuccessful. Excess styrene was used as the solvent, and polymeric materials were obtained in which some of the arene rings were coordinated by $\mathrm{Mn}(\mathrm{CO})_{3}{ }^{+}$. When styrene was treated with $\mathrm{Mn}(\mathrm{CO})_{5} \mathrm{ClO}_{4}$ in refluxing $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, a polymeric material was again obtained due to the polymerization of $\mathbf{1}(\mathbf{H})$. The IR spectrum contained bands characteristic of the coordinated Mn-

[^1]

Figure 1. ORTEP drawing of $\mathbf{2}(\mathbf{H})$. Thermal ellipsoids are shown at the 40% level.
$(\mathrm{CO})_{3}{ }^{+}$moieties and no absorptions in the vinyl region. However, treatment of styrene with $\mathrm{Mn}(\mathrm{CO})_{5} \mathrm{BF}_{4}$ in refluxing $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ afforded $\mathbf{1}(\mathbf{H})$ as the BF_{4}^{-}salt in 68% isolated yield (eq 1). In contrast with [(styrene) $\left.\mathrm{Cr}(\mathrm{CO})_{3}\right], \mathbf{1}(\mathbf{H})$ is easily polymerized in polar organic solvent such as acetone and nitromethane. Thus, to get a pure compound, the crude product

has to be recrystalized rapidly. The same method also gave $\mathbf{1}(\mathbf{P h})$ in 85% yield. In contrast with $\mathbf{1}(\mathbf{H})$, compound [(1,1diphenylethylene) $\left.\mathrm{Mn}(\mathrm{CO})_{3}\right]\left[\mathrm{BF}_{4}\right], \mathbf{1}(\mathbf{P h})$, was quite stable in polar organic solvent.

Reduction of $\mathbf{1}(\mathbf{R})$. The reduction of $\mathbf{1}(\mathbf{H})$ has been studied with several reducing agents. When $\mathbf{1}(\mathbf{H})$ was treated with NaNap (or LiNap) in THF, the manganese salt slowly dissolved as the reaction proceeded. The reaction was quite complex, and we failed to isolate any major products. However, treatment of $\mathbf{1}(\mathbf{H})$ with 1.0 equiv of $\mathrm{Cp}_{2} \mathrm{Co}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or THF produced the bimetallic complex $\mathbf{2 (H)}$ in 31% yield, which contains a $\mathrm{Mn}(\mathrm{CO})_{4}$ moiety coordinated to the styrene in an η^{3}-fashion (eq 2). The use of 2.0 equiv of $\mathrm{Cp}_{2} \mathrm{Co}$ did not change the yield.

Compound $\mathbf{2}(\mathbf{H})$ is stable under N_{2} in the solid state and suffers no detectable decomposition over 1 h in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The bimetallic nature and the $\eta^{5}: \eta^{3}$ bonding pattern of $\mathbf{2 (\mathbf { H })}$ were confirmed by an X-ray structure determination (Figure 1). This is the first example of two manganese carbonyl moieties π-coordinated to a monoarene frame. The $\mathrm{Mn}(2)-\mathrm{C}(1)$ bond distance (2.421(3) \AA) is quite long compared to the bond distances in other
allyl manganese complexes, ${ }^{12}$ which typically have an $\mathrm{Mn}-\mathrm{C}$ distance of $2.18 \AA$, and reflects the weak bonding interaction. The $\operatorname{Mn}(2)-\mathrm{C}(1)$ bond distance is comparable to the distance between $\mathrm{Mn}(1)$ and $\mathrm{C}(1)(2.651(3) \AA)$. The η^{3}-allyl fragment is bonded to the metal in an asymmetric fashion $(\mathrm{C}(7)-\mathrm{Mn}(2)$ and $\mathrm{C}(8)-\mathrm{Mn}(2)$ are $2.139(4)$ and $2.170(4) \AA$, respectively). The bond distance $(1.401(5) \AA)$ of $C(7)-C(8)$ is close to that $(1.390(12) \AA)$ of the coordinated ethylenic double bond in $\mathrm{CpMn}(\mathrm{CO})_{2}\left(\mathrm{CH}_{2}=\mathrm{CHCOCH}_{3}\right){ }^{13}$ Furthermore, the bond distances between $\mathrm{C}(7)-\mathrm{Mn}(2)$ and $\mathrm{C}(8)-\mathrm{Mn}(2)$ are quite similar to those $(2.149(8)$ and $2.175(7) \AA$, respectively) of manganese to ethylenic carbon atoms in $\mathrm{CpMn}(\mathrm{CO})_{2}\left(\mathrm{CH}_{2}=\mathrm{CHCOCH}_{3}\right) .^{13}$ The fold angle $\left(30.6^{\circ}\right)$ between planes $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-$ $\mathrm{C}(6)$ and $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$ is small compared with those in other cyclohexadienylmanganese complexes: 43° in $\left[\left(\eta^{5}-\mathrm{C}_{6} \mathrm{H}_{7}\right) \mathrm{Mn}-\right.$ $\left.(\mathrm{CO})_{3}\right],{ }^{14} 41^{\circ}$ in $\left[\left\{\eta^{5}-\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{C}\right)_{2} \mathrm{CH}-\mathrm{C}_{6} \mathrm{H}_{6}\right\} \mathrm{Mn}(\mathrm{CO})_{3}\right],{ }^{15} 39.6^{\circ}$ in $\left[\left\{\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{W}(\mathrm{CO})_{3} \mathrm{CH}_{3}\right\}-\eta^{5}-\mathrm{C}_{6} \mathrm{H}_{5}\right] \mathrm{Mn}(\mathrm{CO})_{3},{ }^{16}$ and 38.0° in $\left[\left\{\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}\right)_{2} \mathrm{P}(\mathrm{O})-\eta^{5}-\mathrm{C}_{6} \mathrm{H}_{5}\right\} \mathrm{Mn}(\mathrm{CO})_{3}\right] .{ }^{17}$ Thus, we expect that there should be a small contribution of the zwitterionic bonding mode \mathbf{A} in the structure. Compound $\mathbf{2 (H)}$ was inert to both PhMgBr and MeI. However, when $\mathbf{2 (H)}$ was treated with Br_{2}, we could observe through IR spectroscopy the formation of $\mathbf{1 -}$ (H).

When $\mathbf{1}(\mathbf{P h})$ was reduced by $\mathrm{Cp}_{2} \mathrm{Co}, \mathbf{2}(\mathbf{P h})$ and $\mathbf{3}(\mathbf{P h})$ were the major products and $\mathbf{4}(\mathbf{P h})$ was a minor product (eq 3). The

product distribution varied from one experiment to the next, suggestive of radical intermediates, the production and fate of which depend on adventitious impurities. Interestingly, when $\mathrm{Cp}_{2} \mathrm{Co}$ in THF was added dropwise to the solution of $\mathbf{1}(\mathbf{P h})$ in THF, $\mathbf{4 (P h)}$ was obtained as a major product. Compounds 2$(\mathbf{P h}), \mathbf{3}(\mathbf{P h})$, and $\mathbf{4 (P h})$ are stable in solid state, but quite sensitive in solution. The X-ray structure of 2(Ph) (Figure 2) is very close to that of $\mathbf{2 (H)}$. The $\mathrm{Mn}(2)-\mathrm{C}(1)$ bond distance (2.560(3) \AA) is even longer than that in $2(\mathbf{H})$. Interestingly, the $\mathrm{Mn}(2)-\mathrm{C}(8)$ bond is the shortest. The fold angle between

[^2]

Figure 2. ORTEP drawing of $\mathbf{2}(\mathbf{P h})$. Thermal ellipsoids are shown at the 40% level.

Figure 3. ORTEP drawing of $\mathbf{3}(\mathbf{P h})$. Thermal ellipsoids are shown at the 40% level.
planes $C(2)-C(3)-C(4)-C(5)-C(6)$ and $C(2)-C(1)-C(6)$ is 27.4°. Thus, we expect that there should be a contribution of the zwitterionic bonding mode \mathbf{A} as in $\mathbf{2 (H)}$. Compound 3(Ph) has the $\eta^{5}: \eta^{5}$ boding pattern with two $\mathrm{Mn}(\mathrm{CO})_{3}$ moieties π-coordinated to a ligand derived from coupling of 1,1diphenylethylenes through the ipso carbon atom. The X-ray structure of the thermally stable complex $\mathbf{3}(\mathbf{P h})$ is shown in Figure 3. The $\mathrm{C}(1)-\mathrm{C}(7)$ bond distance $(1.344(11) \AA$) is consistent with a $\mathrm{C}-\mathrm{C}$ double bond. ${ }^{18}$ The fold angle between planes $C(2)-C(3)-C(4)-C(5)-C(6)$ and $C(2)-C(1)-C(6)$ is 30.1°, a value quite similar to that $\left(30.6^{\circ}\right)$ found with $2(\mathbf{H})$. The angle $\left(43.1^{\circ}\right)$ between planes $\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)-$ $C(20)$ and $C(16)-C(15)-C(20)$ is similar to 43° observed in $\left[\left(\eta^{5}-\mathrm{C}_{6} \mathrm{H}_{7}\right) \mathrm{Mn}(\mathrm{CO})_{3}\right] .{ }^{14}$ Given the structure of $\mathbf{3}(\mathbf{P h})$, we envisioned that the $\mathrm{Mn}(\mathrm{CO})_{3}$ group coordinated to the plane of $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$ would be relatively easily liberated. When $\left[(\alpha\right.$-methylstyrene $\left.) \mathrm{Mn}(\mathrm{CO})_{3}\right]\left[\mathrm{BF}_{4}\right]$ was treated with $\mathrm{Cp}_{2} \mathrm{Co}$, compound $\mathbf{5 (M e)}$, presumably derived from $\mathbf{3}(\mathrm{Me})$, was

[^3]

Figure 4. ORTEP drawing of $\mathbf{4}(\mathbf{P h})$. Thermal ellipsoids are shown at the 40% level.
obtained as one of the major products (eq 4). Complex $\mathbf{4}(\mathbf{P h})$,

1(Me)

the X-ray structure of which is given in Figure 4, is dark brown due to the presence of a metal-metal bond. The substitution of one CO by $\mathrm{Mn}(\mathrm{CO})_{5}$ does not affect in a significant way the bonding between Mn and the arene ring and between Mn and the two remaining carbonyl groups. The $\mathrm{Mn}-\mathrm{Mn}$ bond distance (2.9144(6) \AA) is quite long, but close to the $\mathrm{Mn}-\mathrm{Mn}$ distance in $\mathrm{Mn}_{2}(\mathrm{CO})_{10 .}{ }^{19}$

Although radical intermediates were not detected experimentally, the structure of products $2-4$ may be suggestive of such species. However, Cooper et al. ${ }^{20}$ reported that the radical $\left[\left(\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Mn}(\mathrm{CO})_{3}\right]$ was thermodynamically unstable with respect to disproportionation to $\left[\left(\eta^{4}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Mn}(\mathrm{CO})_{3}\right]^{-}$and $\left[\left(\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Mn}\right.$ $\left.(\mathrm{CO})_{3}\right]^{+}$. They suggested the anion/cation addition route to explain the formation of dimer $\left[\left\{\mathrm{Mn}(\mathrm{CO})_{3}\right\}_{2}\left\{\mu-\left(\eta^{5}-\mathrm{C}_{6} \mathrm{H}_{6}-\eta^{5}-\right.\right.\right.$ $\left.\left.\left.\mathrm{C}_{6} \mathrm{H}_{6}\right)\right\}\right]$ by the reduction of [(benzene) $\left.\mathrm{Mn}(\mathrm{CO})_{3}\right]^{+}$. Whether we follow a radical-radical coupling or an anion/cation addition mechanism, it is still difficult to explain explicitly the formation of several of the reduction products, and we sought further information from additional reactions. When $\mathbf{1}(\mathbf{H})$ was treated with $\mathrm{Cp}_{2} \mathrm{Co}$ in the presence of excess $\mathrm{MeI}, \mathbf{2 (H)}$ was obtained as a major product. Thus, there was no coupling between an intermediate radical (or an anion) and electrophilic MeI. When $\mathbf{1}(\mathbf{H})$ was treated with nucleophiles such as $\mathrm{RMgX}(\mathrm{R}=\mathrm{Me}$, $\mathrm{Ph}), \mathrm{NaP}(\mathrm{O})(\mathrm{OMe})_{2}, \mathrm{NaBH}_{3} \mathrm{CN}, \mathrm{LiCH}_{2} \mathrm{CO}_{2} t \mathrm{Bu}, \mathrm{LiCMe}_{2} \mathrm{CN}$, and NaCN , the nucelophilic addition products were obtained. ${ }^{21}$ We never observed formation of bimetallics or addition to the ipso-carbon. Interestingly, treatment of $\mathbf{1}(\mathbf{H})$ with $\mathrm{Me}_{3} \mathrm{NO}$ led to isolation of $\mathbf{2}(\mathbf{H})$. However, $\mathbf{2 (P h})$ was not obtained by the reaction of $\mathbf{1}(\mathbf{P h})$ with $\mathrm{Me}_{3} \mathrm{NO}$. Right now we do not have any plausible mechanisms to explain the formation of the novel

[^4]Table 1. Crystal Data and Structure Refinements for $\mathbf{2 (H) , 2 (P h) , ~ 3 (P h) , ~ a n d ~} \mathbf{4}(\mathbf{P h})$

	2(H)	2(Ph)	3(Ph)	4(Ph)
chem formula	$\mathrm{C}_{15} \mathrm{H}_{8} \mathrm{Mn}_{2} \mathrm{O}_{7}$	$\mathrm{C}_{21} \mathrm{H}_{12} \mathrm{Mn}_{2} \mathrm{O}_{7}$	$\mathrm{C}_{34} \mathrm{H}_{24} \mathrm{Mn}_{2} \mathrm{O}_{6}$	$\mathrm{C}_{21} \mathrm{H}_{12} \mathrm{Mn}_{2} \mathrm{O}_{7}$
fw	410.09	486.19	638.41	486.19
space group	$P 2_{1} / n$	$P \overline{1}$	$P 2{ }_{1} / c$	$P 2{ }_{1} / a$
a, \AA	6.815(3)	7.165(3)	9.910(3)	12.9462(8)
$b, ~ \AA{ }_{\text {A }}$	18.982(3)	10.102(3)	12.716(3)	10.4840(9)
c, \AA	12.133(2)	14.952(2)	22.839(7)	14.6236(14)
α, deg	90	96.71(2)	90	90
β, deg	98.50(2)	102.64(2)	90.16(2)	89.916(7)
$\gamma, \operatorname{deg}$	90	103.00(2)	90	90
V, \AA^{3}	1552.4(7)	1013.2(5)	2877.9(13)	1984.8(3)
Z	4	2	4	4
$\rho_{\text {calc }}, \mathrm{g} \mathrm{cm}^{-3}$	1.755	1.594	1.473	1.627
θ range for data collected	2.01-24.97	1.42-24.97	1.78-24.98	1.39-24.97
data	2214	2575	2350	3185
parameters	223	277	379	271
R	0.0369	0.0402	0.0660	0.0442
$w R^{2}$	0.0878	0.0948	0.1462	0.0739

Table 2. Selected Bond Distances (\AA) and Angles (deg) for 2(H), 2(Ph), 3(Ph), and $\mathbf{4}(\mathbf{P h})$

2(H)							
C1-C7	1.401(5)	C7-C8	1.401(5)	Mn2-C1	2.421(3)	Mn2-C7	2.139(3)
Mn2-C8	2.170(4)	C1-C2	1.465(5)	Mn1-C2	2.244(3)	Mn1-C3	2.140(3)
C1-C7-C8		26.7(3)	$\mathrm{C} 1-\mathrm{Mn} 2-\mathrm{C} 12$	165.96(14)		2-C1-C6	108.5(3)
C3-C4-C5		17.7(4)	C8-Mn2-C04	92.0(2)		Mn2-C06-O06	179.0(4)
C3-C4-C5		17.3(3)	C8-Mn2-C14	152.7(2)		$\mathrm{Mn} 2-\mathrm{C} 12-\mathrm{O} 4$	179.1(3)
2(Ph)							
C1-C7	1.406(5)	C7-C8	1.419(6)	Mn2-C1	2.560(3)	Mn2-C7	2.178(4)
Mn2-C8	2.118(4)	$\mathrm{Mn} 1-\mathrm{C} 2$	2.234(4)	Mn1-C4	$2.136(4)$	Mn1-C01	1.803(4)
C1-C7-C8		21.2(4)	C1-Mn2-C06	157.8(2)		--C1-C6	108.6(3)
C3-C4-C5		17.7(4)	C8-Mn2-C04	92.0(2)		n2-C06-O06	179.0(4)
3(Ph)							
C1-C7	1.344(11)	C7-C8	1.503(11)	C7-C9	1.489(12)	C21-C22	1.320(11)
$\mathrm{Mn} 1-\mathrm{C} 2$	2.232(8)	$\mathrm{Mn} 1-\mathrm{C} 3$	2.131 (9)	Mn1-C4	2.103(10)	$\mathrm{Mn} 1-\mathrm{C} 01$	1.789 (10)
C8-C15-C21		110.2(7)	C15-C21-C22	121.2(7)		C1-C7-C8	123.8(8)
C01-Mn1-C03		88.8(4)	Mn1-C01-O01	179.1(9)		C3-C4-C5	117.4(10)
4(Ph)							
Mn1-Mn2	2.9144(6)) $\mathrm{C} 1-\mathrm{C} 7$	1.492(3)	C7-C8	1.327(4)) $\mathrm{C} 7-\mathrm{C} 9$	1.488(4)
$\mathrm{Mn} 1-\mathrm{C} 01$	1.792(3)	$\mathrm{Mn} 1-\mathrm{C} 1$	2.176(2)	$\mathrm{Mn} 1-\mathrm{C} 4$	2.190 (3)) $\mathrm{Mn} 2-\mathrm{C} 07$	1.795(3)
$\mathrm{Mn} 2-\mathrm{C} 04$	1.845(3)	C1-C6	1.409(4)	C6-C5	1.410(4)	- $01-\mathrm{O} 01$	1.149(3)
C07-Mn2-Mn1		172.55(10)	Mn1-C02-O02	175.1(3)		$\mathrm{Mn} 2-\mathrm{C} 07-\mathrm{O} 07$	178.5(3)
C7-C9-C10		119.0(3)	C1-C7-C8	119.2(3)		$\mathrm{Mn} 2-\mathrm{Mn} 1-\mathrm{C} 02$	83.27(9)

bimetallic compounds. To firmly establish the reduction mechanism, further investigation is needed.

In conclusion, we have demonstrated that there are multiple reduction pathways available to (arene) $\mathrm{Mn}(\mathrm{CO})_{3}{ }^{+}$cations having a vinyl substituent on the arene ring. This phenomenon appears to be general for the $\left[(\text { arene }) \mathrm{Mn}(\mathrm{CO})_{3}\right]^{+}$complexes containing an unsaturated substituent on the arene. ${ }^{22}$ We are currently attempting to extend this work to other arene transition metal complexes.

Experimental Section

General Information. All solvents were purified by standard methods, and all synthetic procedures were done under nitrogen atmosphere. Reagent grade chemicals were used without further purification.

Elemental analyses were done at the Chemical Analytic Center, College of Engineering, Seoul National University or the Chemical Analytic Center, KIST. ${ }^{1}$ H NMR spectra were obtained with a Varian XL-200 or a Bruker AMX-500 instrument. Infrared spectra were

[^5]recorded on a Shimadzu IR-470 spectrometer. Mass spectra were recorded on a VG ZAB-E double-focusing mass spectrometer.

Synthesis of $\left[(\right.$ styrene $\left.) \mathbf{M n}(\mathbf{C O})_{3}\right]\left[\mathbf{B F}_{4}\right], \mathbf{1}(\mathbf{H})$. A mixture of $\mathrm{Mn}(\mathrm{CO})_{5^{-}}$ $\mathrm{Br}(1.0 \mathrm{~g}, 3.6 \mathrm{mmol})$ and $\mathrm{AgBF}_{4}(0.71 \mathrm{~g}, 3.6 \mathrm{mmol})$ in 40 mL of $\mathrm{CH}_{2}-$ Cl_{2} was refluxed for 1 h without exposure to light. To the reaction mixture was added styrene ($0.63 \mathrm{~mL}, 5.4 \mathrm{mmol}$). The resulting solution was heated at reflux for 6 h . After evaporation of the solvent, the residue was recrystallized by $\mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{NO}_{2}$. The yield was 68% (0.80 g). IR $\left(\mathrm{CH}_{3} \mathrm{NO}_{2}\right) v_{\mathrm{CO}} 2075,2020 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (acetone- $\left.d_{6}\right) \delta 7.02$ $(\mathrm{m}, 5 \mathrm{H}, \mathrm{Ph}), 6.84(\mathrm{dd}, J=10.6,14.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=17.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.96(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{BF}_{4}-$ $\mathrm{MnO}_{3}: \mathrm{C}, 40.05 ; \mathrm{H}, 2.44$. Found: C, $40.19 ; \mathrm{H}, 2.49$.

Synthesis of $\left[(\mathbf{1}, \mathbf{1}-\mathrm{diphenylethylene}) \mathbf{M n}(\mathbf{C O})_{3}\right][\mathbf{B F} 4], \mathbf{1}(\mathbf{P h})$. The same procedure was followed as in the synthesis of $\mathbf{1}(\mathbf{H})$. Yield: 85%. IR $\left(\mathrm{CH}_{3} \mathrm{NO}_{2}\right) \nu_{\mathrm{CO}} 2070,2020 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (acetone- $\left.d_{6}\right) \delta 7.49(\mathrm{~m}$, $5 \mathrm{H}, \mathrm{Ph}), 6.95(\mathrm{~m}, 5 \mathrm{H}$, coordinated Ph$), 6.38\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{8 \beta}\right), 6.02(\mathrm{~s}, 1$ $\mathrm{H}, \mathrm{H}^{8 \alpha}$) ppm. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{BF}_{4} \mathrm{MnO}_{3}: \mathrm{C}, 50.29 ; \mathrm{H}, 2.98$. Found: C, 50.36; H, 3.09.

Reduction of $1 \mathbf{(H)}$. Cobaltocene ($0.14 \mathrm{~g}, 0.6 \mathrm{mmol}$) was dissolved in 10 mL of THF, and the solution was stirred for 10 min at room temperature. To the THF solution was added $\mathbf{1}(\mathbf{H})(0.20 \mathrm{~g}, 0.6 \mathrm{mmol})$. After the solution was stirred for 30 min , any solid precipitates were filtered off and the filtrate was concentrated and column chromatographed on a silica gel column by eluting with hexane/diethyl ether ($\mathrm{v} / \mathrm{v}, 5: 1$). The collected eluant was evaporated and redissolved in 10
mL of pentane. The pentane solution was kept in a freezer. After 1 day, $\mathbf{2}(\mathbf{H})$ was precipitated and filtered. The yield was 31% (78 mg). Single crystals of $\mathbf{2 (H)}$ suitable for X-ray study were grown with use of diethyl ether and hexane. IR (hexane) $\nu_{\mathrm{CO}} 2016,1962,1945 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}\right) \delta 6.00\left(\mathrm{tt}, J=1.2,5.5 \mathrm{~Hz}, \mathrm{H}^{3}\right), 5.37(\mathrm{t}, J=6.0 \mathrm{~Hz}$, H^{4}), 5.31 (ddd, $\left.J=1.3,5.5,7.5 \mathrm{~Hz}, \mathrm{H}^{2}\right), 4.12(\mathrm{ddd}, J=1.3,2.4,7.5$ $\left.\mathrm{Hz}, \mathrm{H}^{1}\right), 4.05\left(\mathrm{dd}, J=7.1,11.7 \mathrm{~Hz}, \mathrm{H}^{6}\right), 3.38\left(\mathrm{~d}, J=7.3 \mathrm{~Hz}, \mathrm{H}^{5}\right)$, $2.54\left(\mathrm{dd}, J=3.3,7.1 \mathrm{~Hz}, \mathrm{H}^{7-\mathrm{exo}}\right.$) , 1.88 (dd, $J=3.3,11.7 \mathrm{~Hz}, \mathrm{H}^{7-\text { endo }}$) ppm. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{8} \mathrm{MnO}_{7}$: C, 43.94; H, 1.96. Found: C, 43.83; H, 1.85.

Reduction of $\mathbf{1}(\mathbf{P h})$. Cobaltocene $(0.14 \mathrm{~g}, 0.74 \mathrm{mmol})$ was dissolved in 20 mL of THF. The solution was stirred for 10 min . To the THF solution was added $\mathbf{1}(\mathbf{P h})(0.30 \mathrm{~g}, 0.74 \mathrm{mmol})$. After the solution was stirred for 30 min , any precipitates were filtered off and the filtrate was evaporated. The residue was chromatographed on a silica gel column by using hexane/diethyl ether (v/v, 50:1). The first yellow band eluted was $\mathbf{3}(\mathbf{P h})$, the second dark red band was $\mathbf{4 (P h)}$, and the last red band was $\mathbf{2}(\mathbf{P h})$. Compounds $\mathbf{2}(\mathbf{P h})$ and $\mathbf{4 (P h)}$ are unstable in air. Thus, to get pure $\mathbf{2}(\mathbf{P h})$ and $\mathbf{4}(\mathbf{P h})$, they must be recrystallized in pentane under N_{2}. The product distribution varied from one experiment to the next. When cobaltocene $(0.14 \mathrm{~g})$ in 10 mL of THF was added dropwise to the solution of $\mathbf{1}(\mathbf{P h})(0.30 \mathrm{~g})$ in 10 mL of THF, $\mathbf{4}(\mathbf{P h})$ was obtained as a major compound. Analytical data for 2(Ph): IR (pentane) $v_{\mathrm{CO}} 2020,1967,1959,1939 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.43$ $\left(\mathrm{d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{8,12}\right), 7.38\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{9,11}\right), 7.27(\mathrm{t}, J$ $\left.=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{10}\right), 5.89\left(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{3}\right), 5.57(\mathrm{t}, J=6.1 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}^{2}\right), 5.50\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{4}\right), 4.69\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{5}\right)$, $3.82\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{1}\right), 2.88\left(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{7-\mathrm{exo}}\right), 2.38$ $\left(\mathrm{d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{7-\text { endo }}\right) \mathrm{ppm}$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{12} \mathrm{Mn}_{2} \mathrm{O}_{7}: \mathrm{C}$, 51.88; H, 2.49. Found: C, 51.60; H, 2.28.

Analytical data for $\mathbf{3}(\mathbf{P h})$: IR (pentane) $\boldsymbol{v}_{\mathrm{CO}} 2014,1950,1938 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.4-6.9(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ph}), 5.63\left(\mathrm{t}, J=5.5 \mathrm{~Hz}, \mathrm{H}^{4}\right)$, $5.57\left(\mathrm{t}, J=4.6 \mathrm{~Hz}, \mathrm{H}^{12}\right), 5.27\left(\mathrm{~s}, \mathrm{H}^{16}\right), 5.10\left(\mathrm{~s}, \mathrm{H}^{16}\right), 4.90\left(\mathrm{~m}, \mathrm{H}^{3,5}\right)$, $4.64\left(\mathrm{t}, J=5.6 \mathrm{~Hz}, \mathrm{H}^{11}\right.$ or $\left.{ }^{13}\right), 4.16\left(\mathrm{t}, 5.6 \mathrm{~Hz}, \mathrm{H}^{11}\right.$ or $\left.{ }^{13}\right), 3.97\left(\mathrm{~m}, \mathrm{H}^{2,6}\right)$, $3.10\left(\mathrm{~d}, 6.6 \mathrm{~Hz}, \mathrm{H}^{10}\right.$ or $\left.{ }^{14}\right), 2.60\left(\mathrm{~d}, 6.6 \mathrm{~Hz}, \mathrm{H}^{10}\right.$ or $\left.{ }^{14}\right), 2.38(\mathrm{~d}, 13.9 \mathrm{~Hz}$, $\left.\mathrm{H}^{8}\right), 2.15\left(\mathrm{~d}, 13.9 \mathrm{~Hz}, \mathrm{H}^{8}\right) \mathrm{ppm}$. Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{24} \mathrm{Mn}_{2} \mathrm{O}_{6}$: C, 63.96; H, 3.79. Found: C, 63.62; H, 3.58.

Analytical data for 4(Ph): IR (pentane) $\nu_{\mathrm{CO}} 2058$ (w), 1997 (w), 1972 (s), 1962 (s), 1948 (w) cm ${ }^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.37(\mathrm{~m}, 5 \mathrm{H}$, $\mathrm{Ph}), 5.84(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.65(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.46(\mathrm{~m}, 5 \mathrm{H}$, protons on the coordinated phenyl ring) ppm. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{12} \mathrm{Mn}_{2} \mathrm{O}_{8}$: C, 51.88; H, 2.46. Found: C, 51.96; H, 2.32.

Reduction of $\mathbf{1}(\mathbf{M e})$. Cobaltocene $(0.14 \mathrm{~g}, 0.74 \mathrm{mmol})$ was dissolved in 20 mL of THF. The solution was stirred for 10 min . To the THF solution was added $\mathbf{1}(\mathbf{M e})(0.25 \mathrm{~g}, 0.74 \mathrm{mmol})$. After the
solution was stirred for 30 min , any precipitates were filtered off and the filtrate was evaporated. The residue was chromatographed on a silica gel column by eluting with hexane/diethyl ether (v/v, 50:1). The first yellow band eluted was $\mathbf{5 (M e)}$. The second and the third dark red bands could not be characterized due to the low stability of the corresponding compounds. The product distribution varied from one experiment to the next. Analytical data for $\mathbf{5}(\mathbf{M e})$: IR (pentane) v_{CO} 2010, 1947, $1935 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.23$ (t, $J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.13(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}), 7.03(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{Ph}), 5.66(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 1 \mathrm{H}), 5.00(\mathrm{~s}, 1 \mathrm{H}), 4.78$ $(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.65(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~m}, 1 \mathrm{H}), 1.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.27$ (dd, $J=8.8,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.15(\mathrm{dd}, J=4.8,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.01$ (d, $\left.J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} ; \operatorname{HRMS}(\mathrm{m} / \mathrm{z}) \mathrm{M}^{+}$calcd 376.0871 , obsd 376.0873.

X-ray Structure Determinations of 2(H), 2(Ph), 3(Ph), and 4(Ph). Crystals of $\mathbf{2 (H)}$ were grown by slow evaporation of its solution in hexane. Crystals of $\mathbf{2 (\mathbf { P h }) \text { were grown similarly in pentane under }}$ nitrogen atmosphere. Crystals of $\mathbf{3}(\mathbf{P h})$ were grown in diethyl ether/ hexane. Crystals of $\mathbf{4}(\mathbf{P h})$ were grown by slow evaporation of a hexane solution in a freezer.

Diffraction experiments were performed by using an Enraf-Nonius CAD4 automated diffractometer with an $\omega-2 \theta$ scan method. Unit cells were determined by centering 25 reflections in the appropriate 2θ range. Other relevant experimental details are listed in Table 1. The selected bond distances and angles are shown in Table 2. The structure was solved by direct method with SHELXS-86 and refined by full-matrix least squares with SHELXL-93. All non-hydrogen atoms were refined anisotropically; hydrogen atoms were refined isotropically by using the riding model with 1.2 times the equivalent isotropic temperature factors of the atoms to which they are attached.

Acknowledgment. We thank the Korea Science and Engineering Foundation (93-0500-02-01-3 and 96-0501-03-01-3), the Ministry of Education (BSRI 96-3415), and the Center for Molecular Catalysis for financial support.

Supporting Information Available: Tables of atomic coordinates, bond lengths and angles, anisotropic displacement parameters, and hydrogen atom positional and displacement parameters for $\mathbf{2}(\mathbf{H}), \mathbf{2}(\mathbf{P h}), \mathbf{3}(\mathbf{P h})$, and $\mathbf{4}(\mathbf{P h})$ (24 pages). See any current masthead page for ordering and Internet access instructions.

JA970099I

[^0]: ${ }^{\otimes}$ Abstract published in Advance ACS Abstracts, August 1, 1997.
 (1) (a) Kochi, J. K. J. Organomet. Chem. 1986, 300, 139. (b) Astruc, D. Angew. Chem., Int. Ed. Engl. 1988, 27, 643. (c) Astruc, D. New J. Chem. 1992, 16, 305. (d) Astruc, D. Electron Transfer and Radical Processes in Transition-Metal Chemistry; VCH publishers: New York, 1995. (e) Connelly, N. G.; Geiger, W. E. Chem. Rev. 1996, 96, 877.
 (2) (a) Thompson, R. L.; Lee, S.; Rheingold, A. L.; Cooper, N. J. Organometallics 1991, 10, 1657. (b) Thompson, R. L.; Geib, S. J.; Cooper, N. J. J. Am. Chem. Soc. 1991, 113, 8961. (c) Lee, S.; Geib, S. J.; Cooper, N. J. J. Am. Chem. Soc. 1995, 117, 9572.
 (3) Neto, C. C.; Baer, C. D.; Chung, Y. K.; Sweigart, D. A. J. Chem. Soc., Chem. Commun. 1993, 816.
 (4) Gaudet, M. V.; Hanson, A. W.; White, P. S.; Zaworotko, M. J. Organometallics 1989, 8, 286.
 (5) (a) Sun, S.; Dullaghan, C. A.; Carpenter, G. B.; Rieger, A. L.; Rieger, P. H.; Sweigart, D. A. Angew. Chem., Int. Ed. Engl. 1995, 34, 2540. (b) Dullaghan, C. A.; Sun, S.; Carpenter, G. B.; Weldon, B.; Sweigart, D. A. Angew. Chem., Int. Ed. Engl. 1996, 35, 212.
 (6) Morken, A. M.; Eyman, D. P.; Wolff, M. A.; Schauer, S. J. Organometallics 1993, 12, 725.
 (7) Thompson, R. L.; Geib, S. J.; Cooper, N. J. J. Am. Chem. Soc. 1991, 113, 8961.

[^1]: (8) (a) Rausch, M. D.; Moser, G. A.; Ziako, E. J.; Lipmar, A. L., Jr. J. Organomet. Chem. 1970, 23, 185. (b) Knox, G. R.; Leppard, D. G.; Pauson, P. L.; Watts, W. E. J. Organomet. Chem. 1972, 34, 347. (c) Semmelhack, M. F.; Seufert, W.; Keller, L. J. Am. Chem. Soc. 1980, 102, 6584.
 (9) Jevnaker, N.; Benneche, T.; Undheim, K. Acta Chem. Scand. 1993, 47, 406.
 (10) (a) Pearson, A. J.; Richards, I. C. J. Organomet. Chem. 1983, 258, C41. (b) Basin, K. K.; Balkeen, W. G.; Pauson, P. L. J. Organomet. Chem. 1981, 204, C25.
 (11) (a) Fischer, E. O.; Hafner, W. Z. Naturforsch., B 1955, 10, 665. (b) Fischer, E. O.; Seus, D. Chem. Ber. 1956, 89, 1809. (c) Coffield, T. H.; Sandel, V.; Closson, R. D. J. Am. Chem. Soc. 1957, 79, 5826.

[^2]: (12) (a) Liehr, G.; Seibold, H.-J.; Behrens, H. J. Organomet. Chem. 1983, 248, 351. (b) Brisdon, B. J.; Edwards, D. A.; White, J. W.; Drew, M. G. B. J. Chem. Soc., Chem. Commun. 1980, 2129. (c) Paz-Sandoval, M. A.; Powell, P.; Drew, M. G. B.; Perutz, R. N. Organometallics 1984, 3, 1026. (d) Bleeke, J. R.; Kotyk, J. J. Organometallics 1985, 4, 194.
 (13) Le Borgne, P. G.; Gentric, E.; Grandjean, D. Acta Crystallogr., Sect. B 1975, 31, 2824.
 (14) Churchill, M. R.; Scholer, S. Inorg. Chem. 1969, 8, 1950.
 (15) Mawby, A.; Walker, P. J. C.; Mawby, R. J. J. Organomet. Chem. 1973, 55, C39.
 (16) Chung, T.-M.; Chung, Y. K. Organometallics 1992, 11, 2822.
 (17) Lee, T.-Y.; Yu, H.-K. Bae; Chung, Y. K.; Hallows, W. A.; Sweigart, D. A. Inorg. Chim. Acta 1994, 224, 147.

[^3]: (18) (a) Orpen, A. G.; Brammer, L.; Allen, F. H.; Kennard, O.; Watson, D. G. J. Chem. Soc., Dalton Trans. 1989, S1. (b) Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A. G.; Taylor, R. J. Chem. Soc., Dalton Trans. 1987, S1.

[^4]: (19) (a) Dahl, L. F.; Ishishi, E.; Rundle, R. E. J. Chem. Phys. 1957, 26, 1750. (b) Dahl, L. F.; Rundle, R. Acta Crystallogr. 1963, 16, 419.
 (20) Lee, S.; Lovelace, S. R.; Arford, D. J.; Geib, S. J.; Weber, S. G.; Cooper, N. J. J. Am. Chem. Soc. 1996, 118, 4190.
 (21) Lee, T.-Y.; Son, S. W.; Chung, Y. K. Unpublished results.

[^5]: (22) Chemical reduction of (trans- β-methylstyrene $) \mathrm{Mn}(\mathrm{CO})_{3}{ }^{+},(\mathrm{PhC} \equiv \mathrm{CH})-$ $\mathrm{Mn}(\mathrm{CO})_{3}{ }^{+},(\alpha$-methylstyrene $) \mathrm{Mn}(\mathrm{CO})_{3}{ }^{+}$, and (vinylthiophene) $\mathrm{Mn}(\mathrm{CO})_{3}{ }^{+}$ followed similar reaction courses. These results will be published in due course.

